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ABSTRACT

Modeling the effects of atmospheric turbulence on optical beam propagation is a key element in the design and
analysis of free-space optical communication systems. Numerical wave optics simulations provide a particularly
useful technique for understanding the degradation of the optical field in the receiver plane when the analytical
theory is insufficient for characterizing the atmospheric channel. Motivated by such an application, we use a split-
step method modeling the turbulence along the propagation path as a series of thin random phase screens with
modified von Kármán refractive index statistics using the Hufnagel-Valley turbulence profile to determine the
effective structure constant for each screen. In this work, we employ a space-to-ground case study to examine the
irradiance and phase statistics for both uniformly and non-uniformly spaced screens along the propagation path
and compare to analytical results. We find that better agreement with the analytical theory is obtained using a
non-uniform spacing with the effective structure constant for each screen chosen to minimize its contribution to
the scintillation in the receiver plane. We evaluate this method as a flexible alternative to other standard layered
models used in astronomical imaging applications.
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1. INTRODUCTION

Modeling laser beam propagation through a turbulent atmospheric channel provides critical insight into the
expected wavefront behavior at the aperture of an optical receiver. This behavior should be understood early
in the optical system’s development process in order to adequately predict communication link budgets and
define optical system design requirements. Accurate beam propagation modeling through turbulent media,
specifically Earth’s atmosphere, is required for predicting performance in a variety of optical link scenarios such
as spacecraft-to-ground, spacecraft-to-aircraft, aircraft-to-aircraft, aircraft-to-ground, and ground-to-ground.

Analytical methods are often used for producing high-level link budgets for atmospheric channels when the
communications equipment is already well-characterized; however, Monte Carlo numerical wave optics simulu-
ations provide a useful tool facilitating the analysis of uncharacterized optical receiver and transmitter designs
that are expected to operate under a variety of atmospheric conditions. The basic method for such simulations is
reviewed in Section 2 and is well-documented in the literature. The split-step method discretizes the propagation
path as an alternating sequence of vacuum propagations and thin phase screens representing the cumulative effect
of the turbulence on the optical wave propagating through a corresponding extended volume of atmosphere.

For slant path atmospheric channels it is important to correctly model the variations in the strength of the
optical turbulence along the propagation path which is known to vary appreciably with altitude. A number of
methods for the discretization of such path-dependent turbulence profiles are discussed in Section 3; however, a
thorough study of this problem does not appear in the literature. While a completely general analysis is beyond
the scope of this paper, we give in this report an analysis of several generally applicable discretization schemes
evaluated by comparing the irradiance and phase statistics of the numerically propagated optical fields to those
expected from the analytical theory based on propagation through a continuously varying turbulence profile. In
particular, we are interested in identifying a general method which is readily adaptable to handle the variety
of slant path turbulence profiles associated to the optical link scenarios mentioned above and which requires
minimal case-by-case supervision.
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2. BACKGROUND

2.1 Split-step beam propagation method

The split-step beam propagation method is a numerical method for solving the linear Schrödinger equation

i
∂u

∂z
= − 1

2k

(
∂2

∂x2
+

∂2

∂y2

)
u− kn1(x, y, z)u (1)

for a given initial condition u(x, y, 0) = f(x, y), where k = 2π/λ is a real constant and n1(x, y, z) � 1 is a
real-valued function typically representing small fluctuations in the refractive index of a background medium.
Following Spivack and Uscinski,1 the method can be described as an operator-splitting method obtained by
rewriting the above equation in the form

∂u

∂z
= i(A+B)u

where we have split the Hermitian operator H = A+B into a free-space operator A = (1/2k)[∂2/∂x2 + ∂2/∂y2]
and a scattering operator B = kn1, respectively. Formally, we may write the solution u(x, y, L) in the plane
z = L as u(x, y, L) = U(L, 0)u(·, 0) where the evolution operator U(z1, z0) is the unitary operator defined by the
‘time’-ordered exponential

U(z1, z0) = lim
N→∞

N∏
m=1

eiH(z0+m∆z/N)·∆z/N

with ∆z = z1−z0. The split-step algorithm to propagate the field u(x, y, 0) can then be understood as a method
to approximate this evolution operator by first choosing a segmentation of the propagation path z0 = 0 < z1 <
... < zn = L and writing

u(·, L) = U(zn, zn−1)U(zn−1, zn−2)...U(z1, z0)u(·, 0) (2)

and then applying two successive approximations (known together as the “phase screen approximation”)

U(zj+1, zj) ' exp
(
i

∫ zi+1

zi

H(z)dz
)

(3)

exp
(
i

∫ zj+1

zj

H(z)dz
)
' exp

(
iαj∆zjA

)
· exp

(
i

∫ zj+1

zj

B(z)dz
)
· exp

(
i(1− αj)∆zjA

)
(4)

where ∆zj = zj+1 − zj and 0 ≤ αj ≤ 1 is a freely chosen parameter associated to each interval [zj , zj+1]. In
this paper we are interested in understanding the dependence of the error introduced by these approximations
on the choice of segmentation parameters zj , αj given certain assumptions on the refractive index fluctuations
n1 outlined in Section 2.3.

In the context of scalar diffraction theory it can be shown that a monochromatic traveling optical wave ueikz

with narrow angular spread along the propagation axis (z-axis) satisfies equation (1) provided the refractive
index n = 1 + n1 has sufficiently small fluctuations n1 � 1.2 In this context the split-step method can be
interpreted as a layered model for the medium as illustrated in Figure 1, where the effect of the refractive index
fluctuations in each layer [zj , zj+1] is represented by a single phase screen eiφ(x,y) where φ is given in (4) by

φ(x, y) =

∫ zj+1

zj

B(z)dz = k

∫ zj+1

zj

n1(x, y, z)dz (5)

and describes the variations of the optical path length along rays parallel to the propagation axis. On the other
hand, the solution to u(·,∆z) = exp(i∆zA)u(·, 0) is given by the Fresnel integral

u(ρ,∆z) = 2ik

∫∫
Gp(ρ,∆z;ρ

′, 0)u(ρ′, 0)d2ρ′ (6)

where ρ = (x, y) denotes the transverse coordinates and Gp(ρ, z;ρ
′, z′) = −eik(ρ−ρ′)2/2(z−z′)/4π(z − z′) is

the parabolic equation Green function. This integral can be found numerically very efficiently using a fast
Fourier transform and thus the split-step method described above yields an efficient numerical method for
solving equation (1) by the alternating application of the free-space evolution operator and the phase screens as
specified in (2),(3), and (4).
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Figure 1. Schematic of the split-step beam propagation method.

2.2 Phase screen statistics

The split-step method presented above is particularly useful for Monte Carlo wave optics simulations where one
is interested in obtaining solutions for a large number of randomly generated fields n1 with specified spatial
covariance. If n1 represents fluctuations of the refractive index in the atmosphere due to turbulence, it is
convenient to represent its covariance in terms of a power spectral density Φn(κ, z) via the Fourier transform
relation

〈n1(r1)n1(r2)〉 =

∫∫∫ ∞
−∞

d3κ · eiκ·(r2−r1)Φn

(
κ,
z1 + z2

2

)
(7)

where ri = (xi, yi, zi) and we further assume n1(ri) has Gaussian statistics with zero mean and variance σ2
n(ri).

One of the benefits of using the split-step method is that one need not generate the full three-dimensional
refractive index field n1(x, y, z); it suffices to generate the related 2-dimensional phase screens φ(x, y) defined by
equation (5). In order to obtain the power spectral density Φφ for the phase, one uses (5) to write

〈φ(ρ1)φ(ρ2)〉 = k2

∫ zi+1

zi

∫ zi+1

zi

〈n1(ρ1, ζ1)n1(ρ2, ζ2)〉dζ1dζ2

where ρi = (xi, yi) denotes the transverse coordinates. Substituting (7) for the integrand yields

〈φ(ρ1)φ(ρ2)〉 =

∫∫ ∞
−∞

d2κρ · eiκρ·(ρ2−ρ1)Φφ(κρ), (8)

where

Φφ(κρ) = k2

∫ zi+1

zi

∫ zi+1

zi

∫ ∞
−∞

eiκz(ζ2−ζ1)Φn

(
κρ, κz,

ζ1 + ζ2
2

)
dκzdζ1dζ2. (9)

In Appendix A.1 it is shown that if the path-dependence is of the form Φn(κ, z) = σ2
n(z)Φ̂n(κ) then the integral

above can be evaluated to obtain

Φφ(κρ) ' 2πk2Φ̂n(κρ, κz = 0)

∫ zi+1

zi

σ2
n(z)dz (10)

provided that ∆z � L0 where L0 is the correlation length of the refractive index fluctuations n1 and provided
that the fluctuations are not primarily localized within a distance L0 of the segment boundary z = zi and
z = zi+1. Note that we need not invoke the Markov approximation here as is traditional in deducing (10),
though the Markov limit is still present in the assumption ∆z � L0 and is relevant in treating (or ignoring)
correlations between neighboring phase screens.
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Henceforth, we shall assume the path-dependence of the power spectral density Φn is of the form above where
σ2
n(z) is the variance of the random variable n1(x, y, z) and Φ̂n is the power spectral density normalized by the

variance σ2
n(z). Furthermore, in order to emphasize the dependence of the phase φ on the integration segment

we introduce the normalized phase φ̂ = φ/kΣn where

Σ2
n =

∫ zi+1

zi

σ2
n(z)dz

is the integrated variance along the propagation segment [zi, zi+1], noting that the normalized phase φ̂ has power
spectral density Φ̂φ(κρ) = 2πΦ̂n(κρ, 0).

2.3 Refractive index model

In this work, we assume the power spectral density of refractive index fluctuations is that of a turbulent medium
under the assumption of locally homogeneous and isotropic turbulence

Φn(κ, z) = 0.033C2
n(z)κ−11/3,

1

L0
< κ <

1

l0
(11)

where l0 and L0 are the inner and outer scales of the turbulent eddies, respectively. In this context, the variance
σ2
n(z) of the refractive index fluctuations is customarily given in terms of the refractive index structure constant
C2
n(z), which is proportional to the variance with a constant of proportionality which depends on the inner and

outer scales l0 and L0 in a manner determined by (7). A simple model for the inner and outer scales is included
by using in place of (11) the modified von Kármán power spectral density (PSD)

Φn(κ, z) =
0.033C2

n(z)e−κ
2/κ2

m

(κ2 + κ2
0)11/6

(12)

where κm = 5.92/l0 and κ0 = 2π/L0, which gives a very rough approximation to empirical data outside of the
inertial sub-range 1/L0 < κ < 1/l0 and removes the divergence in expression (11) as κ→ 0.

It is well-known that turbulence in the Earth’s atmosphere depends on altitude and other atmospheric
conditions in a complex manner with the most severe turbulence located within the first few kilometers above
ground level. To account for this, we assume the empirically-based Hufnagel-Valley vertical turbulence profile
giving the refractive index structure constant as a function of the height h in meters above ground level via

C2
n(h) = 0.00594

( v
27

)2

(h/10000)10e−h/1000 + 2.7 · 10−16e−h/1500 + C0e
−h/100 (13)

where the tunable parameters v and C0 represent the root mean square (rms) upper atmospheric wind speed
and the value of C2

n at ground level, respectively.3

2.4 Rytov approximation

Our aim is to evaluate numerically the performance of different splitting parameters zi, αi in the split-step method
for solving the parabolic wave equation (1) assuming the refractive index fluctuation n1(x, y, z) represents a
stochastic field with zero mean, power spectral density (12), and path-dependent variance σ2

n(z) = 〈n1(x, y, z)2〉
determined by (13). The primary tool used in this evaluation will be perturbative solutions to (1) furnished
under these assumptions by the Rytov method.

The Rytov method is a perturbation-theoretic technique which allows one to approximate statistical moments
of the solutions u(ρ, L) of the stochastic parabolic wave equation (1). The substitution u = eψ transforms (1)
into a Riccati-type equation

2ik
∂ψ

∂z
+ (∇ψ)2 +∇2

ρψ + 2k2n1 = 0
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which trades the coupled stochastic term n1u for a nonlinear term (here, ∇ρ denotes the gradient in the transverse
coordinates). Expanding ψ(ρ, L) in a perturbation series ψ = ψ0+ψ1+ψ2+... where u0 = eψ0 is the unperturbed
free-space solution of (1) given by the Fresnel integral (6) and

ψ1(ρ, L) = −k2

∫ L

0

∫∫ ∞
−∞

Gp(ρ, L,ρ
′, z)n1(z,ρ′)

(
u0(ρ′, z)

u0(ρ, L)

)
d2ρ′dz,

ψ2(ρ, L) = −
∫ L

0

∫∫ ∞
−∞

Gp(ρ, L,ρ
′, z)n1(z,ρ′) [∇ρψ1(ρ′, z)]

2
(
u0(ρ′, z)

u0(ρ, L)

)
d2ρ′dz

yield the first and second order Rytov approximations.4

Denoting the log-amplitude and phase perturbations by χ + iS = ψ1 + ψ2 + ... one can obtain approxi-
mations for various statistical moments such as the log-amplitude variance 〈χ2〉, mean irradiance 〈I(ρ, L)〉 =
|u0(ρ, L)|2〈e2χ(ρ,L)〉, etc. Such approximations shall be introduced as needed in the following, and are known to
be valid provided the irradiance fluctuations are sufficiently small (σ2

I = exp(4〈χ2〉)− 1 . 0.25).2

3. DISCRETIZATION OF THE PROPAGATION PATH

For very small sampling grids, one can minimize the discretization error in the approximations (3) and (4) by
simply increasing the number of phase screens. For example, using up to 128 phase screens, Coles and Frehlich
found that as the screen spacing becomes small the error in the normalized intensity is linearly proportional
to the segment length ∆z represented by each screen, in agreement with the original analysis of Spivack and
Uscinski.5 However, for larger N × N sampling grids (e.g. N ≥ 2048) each additional screen adds significant
computational time to the beam propagation algorithm and it is thus desirable to optimize the segmentation to
minimize both the error and the number of phase screens.

It is well-known that for an extended region to be accurately represented by a single phase screen the total
scattering strength of the screen must be sufficiently small.6 Extending the analysis of Spivack and Uscinski,
we provide in the appendix a partial analysis of the approximation (4) including both the segment length ∆z
and the scattering strength which is shown by (10) to be dependent on the integrated turbulence strength Σn.
Loosely speaking, the phase screen approximation becomes insufficient when the propagation distance after
appreciable wavefront distortions develop is too large to ignore the redistribution of energy due to propagation of
the perturbed wavefront. However, a preliminary mathematical analysis in Appendix A.2 is as yet insufficient to
determine precisely the subtle dependence of the phase screen approximation on the combination of the scattering
strength Σn and propagation distance ∆z.

This complex behavior has prompted several suggestions of methods for segmenting the propagation path to
improve the phase screen approximation. For example, Martin and Flattè suggest that the contribution of each
segment to the total scintillation index (as measured by the Rytov variance) should not be too large.6 Another
common approach is to attempt to choose both the segmentation zi and the weights αi in (4) in such a way that
the discrete moments match the continuous moments

n∑
i=1

C2
niζ

m
i =

∫ L

0

zmC2
n(z)dz

where C2
ni =

∫ zi+1

zi
C2
n(z)dz is the integrated turbulence and ζi = (1 − αi)zi + αizi+1 is the location of the i-th

phase screen.7 With n screens this latter approach matches the first n − 1 moments, but leaves the placement
of the screens as a freely specifiable parameter; however, for many choices of screen placement the solution of
the moment equations above leads to unphysical negative weights C2

ni . For example, when this method was
introduced by Troxel et al. for simplifying the mathematical analysis of imaging through turbulence,8 it was
determined on an ad hoc basis that a four-layer model was sufficient with screens placed at 200 m, 2 km, 10 km,
and 18 km, reportedly matching the optical transfer function for propagation through the atmosphere to within
1% of the continuous C2

n profile.

In attempting to model a variety of propagation channels, particularly those which may evolve dynamically
(e.g. in the case of links to and from an aircraft), it is desirable to have a general and flexible algorithm for
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obtaining an optimal discretization of the slant path turbulence profile which requires minimal case-by-case
supervision. As a step in this direction, we make in this paper a comparative study of various general algorithms
for determining the segmentation of the propagation path ∆zi, αi. In particular, we compare algorithms which
segment the path based on (1) minimizing the variance of the phase for each screen (i.e. minimizing Σn), (2)
minimizing the propagation distance ∆z represented by each screen (uniform segments), and (3) minimizing the
contribution of each screen to the total scintillation.

For the latter, we note that the on-axis log-amplitude variance for a Gaussian beam wave in weak turbulence
with modified von Kármán refractive index statistics can be found via the Rytov method to be given by9

〈χ(0)2〉 = −0.033π2k2Γ(−5/6)

∫ L

0

C2
n(z) ·G(z)dz (14)

where G(z) is a spatial filter function which depends on the size and location of the beam waist and gives a larger
weight to turbulence near the source. Specifically, this function is given by G(z) = Re[f(z)5/6] − Re[f(z)]5/6

where

f(z) = i
z − q0

L− q0

(
L− z
k

)
+

1

κ2
m

and q0 is the complex beam parameter specifying the Gaussian beam in the source plane according to u(ρ, 0) =
E0 exp(ikρ2/2q0). This reduces to the Rytov variance as the Gaussian beam approaches a plane wave. For
segmentation method (3), we thus choose our segments [zi, zi+1] so that each segment contributes equally (hence,
minimally) to the integral (14).

For methods (1)-(3) considerations in Appendix A.2 suggest that one can minimize the error introduced in
(4) by placing the phase screens at the midpoint of each segment analogous to Strang splitting with αi = 1/2;
however, this neglects the original error introduced by the phase screen approximation in (3). Another reasonable
option is to locate the screen in each segment at the turbulent center of mass defined by

ζi =

∫ zi+1

zi
zC2

n(z)dz∫ zi+1

zi
C2
n(z)dz

.

To compare the two options for locating the screen within each segment we examine segmentation method (3)
with both centered, and center-of-mass (COM) located screens. In the following, we shall refer to the discretiza-
tion algorithms (1),(2), and (3) as “phase-minimized” (PM), “distance-minimized” (DM), and “scintillation-
minimized” (SM), respectively, with the latter further specified as centered or center-of-mass depending on the
location of the phase screens. The four-layer model of Troxel et al. described above shall be referred to as the
“moment-matched” (MM) discretization.

4. RESULTS OF NUMERICAL SIMULATION

To examine the general methods described in Section 3, we consider as a case study a 24 km vertical propagation
path representing a space-to-ground atmospheric channel (we remark that the 24 km altitude is not chosen to
represent the altitude of a transmitter/receiver but rather represents the onset of the refractive index fluctuations
for a beam propagating from space—such fluctuations are assumed to vanish above 24 km when applying the
Hufnagel-Valley model10). The path is segmented using 4 phase screens so that we may compare the three general
algorithms discussed above to the moment-matched four-layer model introduced by Troxel et al. A summary
of the different discretization algorithms applied to this propagation path is given in Table 1 and Figures 2-3.
In this study we consider several turbulence levels obtained from the Hufnagel-Valley model by adjusting the
ground level refractive index structure constant C0 in (13); the rms upper atmospheric wind speed is fixed at
v = 21 m/s as in the Hufnagel-Valley 5/7 model commonly used to represent optical turbulence during daytime.3

To compute random draws of the phase screens with the desired spatial statistics (10), we use the subharmonic
phase screen method shown by Frehlich11 to yield higher fidelity statistics at large spatial scales compared to a
Fourier transform method which only selects random draws for Fourier coefficients within the frequency range
imposed by the spatial grid. For these simulations we have used subharmonic phase screens of order p = 3.11 We
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Figure 2. Discretization of the HV-21 downlink propagation
path with C0 = 1.7 · 10−14 m−2/3. Solid lines represent
segment boundaries and dotted lines the locations of the
phase screens. Bottom: Logarithmic altitude scale.

Figure 3. Discretization of the HV-21 uplink propagation
path with C0 = 1.7 · 10−14 m−2/3.

HV-21, C0 = 1.7 · 10−14 m−2/3 HV-21, C0 = 6.8 · 10−14 m−2/3

Segment Boundaries Screen Locations Segment Boundaries Screen Locations
Type z1 z2 z3 α1 α2 α3 α4 z1 z2 z3 α1 α2 α3 α4

PM 39 m 103 m 289 m 0.5 0.5 0.5 0.5 31 m 77 m 162 m 0.5 0.5 0.5 0.5
DM 6 km 12 km 18 km 0.5 0.5 0.5 0.5 6 km 12 km 18 km 0.5 0.5 0.5 0.5
SM-UL 3.9 km 8.07 km 13.2 km 0.5 0.5 0.5 0.5 3.7 km 7.82 km 13 km 0.5 0.5 0.5 0.5
SM*-UL 3.9 km 8.07 km 13.2 km 0.92 0.52 0.52 0.78 926 m 1.34 km 1.73 km 0.96 0.54 0.52 0.78
MM 1.82 km 4.69 km 14.8 km 0.89 0.94 0.47 0.65 750 m 5.28 km 14.6 km 0.87 0.72 0.49 0.64
SM-DL 13.6 km 16.7 km 19.7 km 0.5 0.5 0.5 0.5 13.7 km 16.7 km 19.8 km 0.5 0.5 0.5 0.5
SM*-DL 13.6 km 16.7 km 19.7 km 0.22 0.52 0.48 0.07 13.7 km 16.7 km 19.8 km 0.22 0.52 0.48 0.04

Table 1. Segmentation parameters produced by the phase-minimized (PM), distance-minimized (DM), scintillation-
minimized (SM), center of mass scintillation-minimized (SM*), and moment-matched (MM) discretization algorithms
for a 24km vertical uplink propagation path using the Hufnagel-Valley profile. The scintillation-minimizing method is the
only asymmetric method and also depends on the input beam; the uplink and downlink parameters are given for a 6 cm
and 2 m collimated beam, respectively.

take for the inner and outer scales of the modified von Kármán spectrum the values l0 = 4 mm and L0 = 100 m
representing typical values for turbulence in the Earth’s atmosphere.

The performance of the different discretization schemes is evaluated by examining the statistics of the prop-
agated optical fields u(ρ) in the receiver plane and comparing to those expected from the Rytov theory with
continuous C2

n profile. One measure we consider is the averaged wave structure function D(r) given by averaging
the wave structure function D(ρ,−ρ) over all pairs of points (ρ,−ρ) located symmetrically about the beam axis
at a separation distance r = |ρ− (−ρ)| = 2|ρ|. Recall that the wave structure function is the sum of the phase
and log-amplitude structure functions Dχ and DS defined by

Dχ(r1, r2) =
〈[
χ(r1)− χ(r2)

]2〉
, DS(r1, r2) =

〈[
S(r1)− S(r2)

]2〉
, .

For locally homogeneous and isotropic turbulence the wave structure function D(ρ,−ρ) for a Gaussian beam
wave at axisymmetrically located points depends only on the separation distance r = 2|ρ| and is given in the
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Rytov theory as3

D(r) = 8π2k2

∫ L

0

∫ ∞
0

κΦn(κ, z)e−ΛLκ2(1−z/L)2 ·
[
I0(Λ(1− z/L)κr)− J0([1− Θ̄(1− z/L)κr)

]
dκ dz (15)

where J0 (I0) is the (modified) Bessel function, and Θ̄,Λ are the real and imaginary parts of the complex
parameter z/(z− q0), respectively. For the results presented below this integral was evaluated numerically using
the modified von Kármán refractive index PSD for each of the propagation scenarios considered.

Since a vertical propagation path through the Earth’s atmosphere is highly asymmetric—with most of the
turbulence located within the first few kilometers above ground level—we examine both the uplink and downlink
paths in order to obtain a better understanding of how the different discretization schemes perform under these
two important scenarios.

4.1 Uplink atmospheric channel

First we consider a 24 km vertical propagation path with the plane of the transmitter located at ground level.
In this case, we assume a collimated Gaussian beam of diameter 6 cm and wavelength λ = 1.55 µm representing
a beam at the exit aperture of a ground-based transmitter. We use an N ×N sampling grid with N = 1024 and
∆x = ∆y = 1.9654 mm. For the results presented in this section 200 simulations were performed to obtain the
desired statistical convergence.

4.1.1 Uplink wave structure function

In Figures 4-5 the behavior of the wave structure function is shown at all spatial separations on a logarithmic scale
against the behavior predicted from the Rytov theory (15) for the continuous turbulence profile. The solution

to (15) for the path-averaged constant profile C̄2
n(z) = C̄2

n = (1/L)
∫ L

0
C2
n(z′)dz′ is also given for reference.

Figure 4. Wave structure function for uplink HV-21 profile
with ground turbulence C0 = 1.7 · 10−14 m−2/3.

Figure 5. Wave structure function for uplink HV-21 profile
with ground turbulence C0 = 6.8 · 10−14 m−2/3.

At the higher turbulence level, the center of mass scintillation-minimized discretization yielded the closest
agreement with the predicted wave structure function. At small spatial scales the moment-matched segmentation
gave almost identical results, but exhibited an anomalous transition at a separation of 60 cm, anticipating by
40 cm the expected transition at the beam edge separation of 1 m. A similar but much smaller effect of this
nature was also visible in the structure functions obtained from the other discretizations. In weaker turbulence
(C0 = 1.7 · 10−14 m−2/3) the center of mass and moment-matched discretizations yielded the smallest absolute
error at the smaller scales up to about 30 cm; however, the centered distance-minimized discretization yielded a
smaller error at the larger scales.
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4.1.2 Uplink mean irradiance

In contrast to the downlink path studied below, severe turbulence near the source leads to significant beam
spreading on the uplink. For a unit-amplitude Gaussian beam with beam radius w0 at the input plane the mean
irradiance profile at the receiver plane can be approximated by a Gaussian3

〈I(r)〉 ' w2
0

w2
e

exp

(
−2ρ2

w2
e

)
(16)

where we is the effective long-term spot radius given in the Rytov approximation as we = w
√

1 + T with
w = w(L) the diffraction-limited beam radius at the output plane and

T = 4π2k2

∫ L

0

∫ ∞
0

κΦn(κ, z)
(

1− e−2κ2(L−z)2/k2w2
)
dκ dz.

This is evaluated numerically and plotted in Figures 6-7 against the mean irradiance obtained from each dis-
cretization normalized by the on-axis irradiance after propagation in vacuum.

Figure 6. Mean irradiance for uplink HV-21 profile with
ground turbulence C0 = 1.7 · 10−14 m−2/3.

Figure 7. Mean irradiance for uplink HV-21 profile with
ground turbulence C0 = 6.8 · 10−14 m−2/3.

The mean irradiance expected by the Rytov theory with path-averaged C2
n profile is shown for comparison.

All of the discretizations yield a similar mean irradiance profile in the weaker turbulence profile; however, the
center-of-mass scintillation-minimized and moment-matched discretizations show the closest agreement at the
higher turbulence level while the other discretizations trended toward the mean irradiance expected from the
path-averaged turbulence profile.

4.1.3 Uplink scintillation index

The scintillation index of an optical field with intensity I(ρ) = |u(ρ, L)|2 is defined by

σ2
I (ρ) =

〈I2(ρ)〉 − 〈I(ρ)〉2

〈I(ρ)〉2
= exp

(
4〈χ2〉

)
− 1.

Unfortunately, the Rytov approximation for the scintillation index given by the integral (14) is not valid on the
uplink propagation path considered here since the irradiance fluctuations near the beam edge are large even for
relatively small ground turbulence levels C0. Nevertheless, we show in Figure 8 the on-axis scintillation index
obtained from the different discretizations at a range of ground turbulence levels.

We note that the moment-matched and center of mass scintillation-minimized discretizations yield similar
results for the on-axis scintillation index, as do the distance- and phase-minimized discretizations, though the
latter resulted in significantly more scintillation, while the centered scintillation-minimized screens resulted in
even larger on-axis scintillation at the receiver plane.
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Figure 8. On-axis scintillation index for the uplink HV-21 turbulence
profile as a function of the ground level turbulence parameter.

4.2 Downlink atmospheric channel

For the downlink channel the optical field at the source plane is taken to be a collimated Gaussian beam of
diameter 2 m at a wavelength λ = 1.55 µm. Due to the large transverse size of the beam the sampling grid is
taken with N = 4096 points along each side and a separation distance ∆x = ∆y = 0.9827 mm.

4.2.1 Downlink wave structure function

The results of 200 simulations were analyzed and the wave structure function computed within a 1 m window
centered on the optical axis of the beam. For the downlink, the wave structure function computed via the first
order Rytov theory (15) depends to an excellent approximation only on the total integrated turbulence

D(r) ' 6.88

(
r

r0

)5/3

(17)

with r0 =
(

0.423k2
∫ L

0
C2
n(z)dz

)−3/5

. In Figures 9-10 we plot the wave structure function for each discretization

on a logarithmic scale against the theoretical result (15).

At both turbulence levels the centered scintillation-minimized phase screens show slightly better agreement
with the theoretical expression (15) though the differences in the schemes becomes more difficult to distinguish
in the more turbulent conditions.

A more highly resolved look at the smaller scale behavior is also given in Figures 11-12 in the form of the
modulus of the complex degree of coherence µ(r) = exp(− 1

2D(r)) where the spatial coherence radius ρ0 = r0/2.1
can be read off as the 1/e point µ(ρ0) = 1/e. In weaker turbulence all of the approaches yield the theoretical value
of ρ0 = 9.2 cm within an absolute error of 2.6 cm, though the centered scintillation-minimized and momented-
matched discretizations yield the closest agreement with an error of 1.5 and 1.4 cm, respectively. At stronger
turbulence the simulations yield the spatial coherence radius ρ0 = 4.5 cm within an absolute error of 1 cm with
the centered scintillation- and distance-minimized screens yielding an error within 0.3 cm.

4.2.2 Downlink scintillation index

For a Gaussian beam in the regime of weak irradiance fluctuations (σ2
I . 0.25) the Rytov approximation gives

the on-axis scintillation index via the integral (14); however, we note that for a Gaussian beam on the downlink

10



Figure 9. Wave structure function for downlink HV-21 pro-
file with ground turbulence C0 = 1.7 · 10−14 m−2/3.

Figure 10. Wave structure function for downlink HV-21 pro-
file with ground turbulence C0 = 6.8 · 10−14 m−2/3.

Figure 11. Modulus of the complex degree of coherence for
downlink HV-21 profile with ground turbulence C0 = 1.7 ·
10−14 m−2/3.

Figure 12. Modulus of the complex degree of coherence for
downlink HV-21 profile with ground turbulence C0 = 6.8 ·
10−14 m−2/3.

path the scintillation index is roughly constant up to the beam edge and is well approximated by the plane wave
expression (i.e. the Rytov variance)

σ2
R = 2.25k7/6

∫ L

0

C2
n(z)(L− z)5/6dz.

The resulting scintillation index for the Hufnagel-Valley turbulence profile with rms wind v = 21 m/s at a range
of values for the ground level turbulence parameter ranging from the weak fluctuation regime to the onset of
strong fluctuations is shown in Figure 13.

As a point of reference, we also show the scintillation index for a constant C2
n profile with the equivalent

path-averaged C2
n compared to the corresponding Hufnagel-Valley profile. However, for the path-averaged profile

the onset of strong fluctuations occurs earlier so we use a model for the on-axis scintillation index introduced by
Andrews et al.12

σ2
I = exp

(
0.49σ2

R

(1 + 1.11σ
12/5
R )7/6

+
0.51σ2

R

(1 + 0.69σ
12/5
R )5/6

)
− 1

which accounts for saturation in the strong fluctuation regime. By averaging the scintillation index over the cen-
tral portion of the sampling grid of 1 m diameter we obtain sufficient statistical convergence using 20 simulations
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at each turbulence level.

Figure 13. Scintillation index for the downlink HV-21 turbulence profile
as a function of the ground level turbulence parameter. (Note: the scint.-
minimized (COM) and moment-matched results are almost identical)

The center of mass scintillation-minimized and moment-matched models yielded excellent agreement with
the theoretically-predicted scintillation for the continuous turbulence profile. As the ground-level turbulence
is increased, the other discretizations all over-estimate the scintillation index by values approaching (and even
exceeding) the predicted scintillation for the corresponding constant turbulence profile. Notably, the centered
distance- and centered scintillation-minimized discretizations appear to exhibit saturation at roughly the turbu-
lence level where saturation is expected from the path-averaged constant turbulence profiles.

5. SUMMARY

For the atmospheric channels described above, we examined several discretization algorithms for the segmentation
of the propagation path and placement of the phase screens. For those statistics which depend (in the Rytov
theory) on the higher moments of the continuous turbulence profile we found that an algorithm which split the
propagation path based on minimizing the contribution of each segment to the total scintillation and located
the phase screens at the turbulent center of mass in each segment (as defined in Section 3) exhibits the closest
agreement with the statistics expected from the Rytov theory. This discretization yielded comparable results to a
four-layer model introduced by Troxel et al. for this particular propagation path known to yield close agreement
to the optical transfer function of the continuous turbulence profile. Other discretizations of the propagation
path which located the screens at the center of each segment produced results tending toward those expected
from the path-averaged turbulence profile, and thus tended to yield better agreement with the Rytov theory for
those statistics which depend only on the zeroth moment of the continuous turbulence profile.
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APPENDIX A.

A.1 Phase power spectral density for path-dependent refractive index statistics

In this appendix, we deduce the two-dimensional phase power spectral density (10) assuming a refractive index
power spectral density of the form Φn(κ, z) = σ2

n(z)Φ̂n(κ). The starting point is the expression (9), repeated
here for convenience,

Φφ(κρ) = k2

∫ zi+1

zi

∫ zi+1

zi

∫ ∞
−∞

eiκz(ζ2−ζ1)Φn

(
κρ, κz,

ζ1 + ζ2
2

)
dκzdζ1dζ2 (18)

where κ = (κρ, κz) denotes the splitting into transverse and longitudinal components. To evaluate this, we first
introduce the change of variables ζ± = (ζ2 ± ζ1)/2 and set ζ0 = (zi + zi+1)/2 whereupon the integral above
becomes

Φφ(κρ) = 2k2

∫ ∞
−∞

(∫ ζ0

zi

∫ ζ+−zi

zi−ζ+
e2iκzζ−Φn

(
κ, ζ+

)
dζ−dζ+ +

∫ zi+1

ζ0

∫ zi+1−ζ+

ζ+−zi+1

e2iκzζ−Φn

(
κ, ζ+

)
dζ−dζ+

)
dκz

= 2k2

∫ ∞
−∞

(∫ ζ0

zi

Φn(κ, ζ+)
sin(2κz(ζ+ − zi))

κz
dζ+ +

∫ zi+1

ζ0

Φn(κ, ζ+)
sin(2κz(zi+1 − ζ+))

κz
dζ+

)
dκz.

Introducing another change of variables s = 2(ζ+ − zi) in the first integral and s = 2(zi+1 − ζ+) in the second
we obtain

Φφ(κρ) = k2

∫ ∞
−∞

∫ ∆z

0

[
Φn(κ, zi +

s

2
) + Φn(κ, zi+1 −

s

2
)
] sin(κzs)

κz
ds dκz.

Separating out the path-dependence Φn(κ, z) = σ2
n(z)Φ̂n(κ) gives

Φφ(κρ) = k2

∫ ∆z

0

[
σ2
n(zi +

s

2
) + σ2

n(zi+1 −
s

2
)
](∫ ∞

−∞
Φ̂n(κρ, κz)

sin(κzs)

κz
dκz

)
ds.

We have thus obtained the exact solution for the phase screen PSD in terms of the refractive index PSD, which
we may rewrite in the form

Φφ(κρ) = k2

∫ ∆z

0

[
σ2
n(zi +

s

2
) + σ2

n(zi+1 −
s

2
)
]
Kn(κρ, s)ds

where the spatial filter function Kn(κρ, s) depends on the distance s/2 to the boundary of the segment [zi, zi+1].

Note that if L0 is the outer correlation length of the refractive index fluctuations then for κz � 1/L0 we
have Φ̂n(κρ, κz) ' Φ̂n(κρ, κz = 0). Thus, for s � L0 the kernel defining the spatial filter Kn limits to a delta

distribution sin(κzs)/κz ∼ πδ(κz) and we obtain Kn(κρ, s) ' πΦ̂n(κρ, κz = 0). On the other hand, for κz � 1/l0
where l0 is the inner correlation length of the fluctuations, one has Φn(κρ, κz) ' 0 and hence for s� l0 the filter
function vanishes Kn(κρ, s) ' 0. Thus, (assuming ∆z > L0) the expression above can be approximated by

Φφ(κρ) ' 2πk2Φ̂n(κρ, 0)

∫ ∆z

L0

σ2
n(z)dz + k2

∫ L0

l0

[
σ2
n(zi +

s

2
) + σ2

n(zi+1 −
s

2
)
]
Kn(κρ, s)ds

where l0 and L0 are rough order-of-magnitude estimates for the inner and outer correlation lengths which in
practice may be chosen to ensure the validity of the approximations described above. Now, assuming that (1)
the propagation distance is much larger than the outer correlation length ∆z � L0 and (2) the variance σ2

n(z)
is not localized primarily within a distance on the order of L0 from the segment boundary, the second integral
representing contributions from refractive index fluctuations near the boundary is a small perturbation of the
bulk integral given by the first term. Under these assumptions, we are thus led to the approximation (10) given
in Section 2.

As a final remark, we note that some of the discretizations studied in Section 3 do not appear to satisfy these
conditions, as the path segments near ground level are not much longer than the assumed correlation length
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L0 = 100 m and furthermore the refractive index fluctuations of the Hufnagel-Valley profile are highly localized
within the first few hundred meters of ground level. In this case, the expression (10) is valid only up to the limits
of the Markov approximation which assumes that the refractive index fluctuations are δ-correlated in the direction
of propagation and yields an alternative derivation of (10).6 Although this is a somewhat unphysical assumption,
in certain cases analysis of the stochastic parabolic wave equation (1) based on the Markov approximation is
known to yield reliable results for a number of statistical moments of the solutions and is the basis of the strong
fluctuation theory.4

A.2 Operator-splitting for path-dependent random background potential

In this section, we study analytically the error introduced by the discretization in (4). The analysis in this
section applies generally to any application of the operator splitting described by equations (3) and (4) to solve
the Schrödinger equation (1) with a random background potential n1. Our analysis is similar in spirit to that
carried out by Spivack and Uscinski,1 but with particular attention to the path-dependent correlation statistics
of n1. Our approach is based on the Baker-Campbell-Hausdorff formula

eXeY = exp

(
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + ...

)
(19)

where the remaining terms involve higher-order commutators of X and Y . More generally, this implies

eαXeY e(1−α)X = exp

(
X + Y + (α− 1

2
)[X,Y ] +

1

12
[Y, [Y,X]] +

1

12
(5α2 + 5α+ 1)[X, [X,Y ]] + ...

)
Applying this to (4) we obtain

eiα(∆z/k)Âeiφei(1−α)(∆z/k)Â = exp

(
i

∫ zi+1

zi

H(z)dz +
(

1
2 − α

)
(∆z/k)(kΣn)[Â, φ̂] + ...

)
.

where Â = kA is the normalized free-space propagator and φ̂ is the normalized phase defined in Section 2. Note
that the first order error term can be eliminated by setting α = 1/2.

At this point, it is important to note that the higher order commutators of Â and φ̂ may not remain well-
controlled. Indeed, if we assume the solution u(ρ, z) vanishes outside some domain of finite transverse radius

|ρ| = R and expand φ̂ in a Fourier series φ̂(ρ) =
∑
n,m cn,me

iκn,m·ρ with κn,m = (nπ/R,mπ/R) we observe that

the Fourier coefficients of Âφ̂ given by

Âφ̂ = −1

2

∑
n,m

κ2
n,mcn,me

iκn,m·ρ

include a scaling by a factor of κ2
n,m/2. Noting that 〈|cn,m|2〉 = (π/R)Φ̂n(κn,m, 0) we are motivated to introduce

the dimensionless operator Â0 = Âl20 where l0 is the inner correlation length of the refractive index fluctuations

(i.e. Φ̂n(2π/l0, 0) � 1). One thus retains some control over the higher order commutators of Â0 and φ̂ and so
the second order error can be written in the form

ε = − i

12

(
(∆z/kl20)(kΣn)2[φ̂, [φ̂, Â0]] + (5α2 + 5α+ 1)(∆z/kl20

)2
(kΣn)[Â0, [Â0, φ̂]]

)
.

More generally, with this normalization the n-th order error in the exponent of the propagator carries factors of
the form (∆z/kl20)p(kΣn)q where p+ q = n+ 1. However, it should be noted that the assumption that the total
error in the propagator introduced by (19) is small depends also on the solution space on which the commutators
of A and φ act, a point noted by Spivack.13 Indeed, the very convergence of the exponent in (19) depends
crucially on the solution space on which the operator acts, an issue we have left aside in this analysis.

Nonetheless, in order to minimize the error introduced by the second part of the phase screen approximation
(4) the observations above motivate one to consider the discretizations 0 < z1 < ... < zn = L which minimize
some combination of the propagation distance ∆z/kl20 and integrated variance kΣn.
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